
<b-frame/>

Developing Applications with <b-frame/>

A Tutorial

Peter Belkner (peter.belkner@it-fws.de)
Markus Dahm (markus.dahm@it-fws.de)

Version 0.2
Dec 16, 2003

1 INTRODUCTION.. 2

1.1 TUTORIAL...2

2 THE SAMPLE APPLICATION...3

3 SETTING UP THE ENVIRONMENT...4

4 STEP ONE: JUST STUDENTS.. 6

4.1 THE PROJECT’S SETUP... 6
4.1.1 The Database... 6
4.1.2 The Task...8

4.2 TESTING THE TASK.. 9
4.3 CLEANING UP THE PROJECT.. 10

5 STEP TWO: JUST INSTITUTES.. 11

6 STEP THREE: INSTITUTES AND PROFESSORS.. 14

7 STEP FOUR: INSTITUTES, PROFESSORS AND COURSES..17

8 STEP FIVE: STUDENTS AND COURSES...19

9 CUSTOMIZING TASKS...22

9.1 CUSTOMIZING A GROUP.. 22
9.2 CUSTOMIZING THE QUERY...23
9.3 JOINING TABLES.. 24

10 DATABASE CONFIGURATION.. 26

10.1 INSTALLING A DATA SOURCE IN JBOSS.. 26
10.2 MYSQL..27
10.3 ORACLE... 27
10.4 ANT TARGETS...28

11 <B-FRAME/> ARCHITECTURE.. 28

11.1 HOW TO AUGMENT BUSINESS LOGIC.. 29
11.2 CONFIGURATION OF THE APPLICATION DESCRIPTOR...30

12 SUMMARY.. 31

1

<b-frame/>

1 Introduction
<b-frame/> (http://www.b-frame.org/) is a framework generator designed to
enable rapid prototyping and development of J2EE applications. The main property
of <b-frame/> it comparison to other tools is that it works declaratively. The only thing
the developer has to do is to describe her application in an XML file. Starting from
that point, all the gory details such as creating the database, writing hundreds of
Java classes, tag libraries, JSPs, deployment descriptors, compiling the Java classes
and writing an ANT script to assemble everything is performed by <b-frame/>. Once
the developer has finished describing his application the only thing left to do is to is-
sue two commands, one for creating the database and the other one for deploying
the application to the application server. Afterwards you can immediately view the
application using your favorite web browser.

By default the applications created with <b-frame/> are full blown J2EE Web applica-
tions (known as Model II or MVC architecture). They consist of a JSPs and Tag lib-
raries implementing the view, a Servlet as the controller communicating with EJB
Session Beans implementing the transactional business logic. This version of <b-
frame/> introduces the possibility of configuring the application for different ap-
proaches. For instance, one can now use entity beans for data storage instead of
Session Beans (used as so called “Data Access Objects”). This enables the de-
veloper to switch between different implementation strategies on the fly. The gener-
ated code may be configured by custom code supplied by the developer.

1.1 Tutorial
This tutorial is designed as a step by step guide through the <b-frame/> development
process using a simple sample application taken from university’s life. (We apologize
however that the model rather reflects a German university than one in the English
tradition.)

Note: It is assumed that you have some basic knowledge about developing J2EE
applications with Servlets, JSPs and Enterprise Java Beans. We also assume that
you already have installed a recent JDK, that you either use the complete <b-frame/>
distribution (including a stripped JBoss 3.2.2, Ant and the <b-frame/> examples) or
have installed and configured the aforementioned tools somewhere else.
The example here uses the Hypersonic database integrated into JBoss by default.
For real world applications however, you will want to use a different database. How
to deal with other databases, e.g., MySQL or Oracle, is described in chapter 10 at
the end of this tutorial.

2

<b-frame/>

2 The Sample Application
Consider a simple application for planning and maintaining courses held at a uni-
versity as shown in figure 1.

The application consists of the following business classes:

 A Student visits several Courses.
 An Institute is formed by several Professors.
 A Professor belongs to exactly one Institute and may offer several Courses.
 A Course is held by exactly one Professor and may be visited by several Stu-

dents.

Based on these business classes we will create two tasks:

 The Student Task is for maintaining the university’s Students. It will enable
the user to relate Students with Courses. Before it is possible to assign a Stu-
dent to a Course however it will of course be necessary to first create the
Course using the Institute Task.

 The Institute Task is for maintaining the university’s Institutes, their Profess-
ors and the Courses held by the Professors. It will enable the user to list and
maintain all Students visiting a particular Course. Before it is possible to as-
sign a Student to a Course it will of course be necessary to first create the
Student using the Student Task.

3

Figure 1 Planning a university’s courses.

Institute
name

Professor
inst itute_name
professor_id
name
salary

0..*

1

0..*

1

Course
inst itute_name
professor_id
course_id
t itle

0..*

1

0..*

1

Student
student_id
name

0..*0..* 0..*0..*

StudentCourseVisit
student_id
inst itute_name
professor_id
course_id

+CourseList+StudentList

<b-frame/>

Following an incremental step-by-step guide we will show how to create the Student
and the Institute Applications using <b-frame/>

I. The Student Application without the possibility to assign a Student to a
Course, i.e., it is only possible to list and maintain the Student business class.

II. The Institute Application without Professors and Courses.
III. The Institute Application with Professors but without Courses.
IV. The Institute Application with Professors, Institutes and Courses, but without

the possibility to assign Students to the Courses.
V. The complete Student and Institute Applications.

But before we can start you should make sure that your environment is set up prop-
erly.

3 Setting Up the Environment
Before you can start to develop an application using <b-frame/> you should check
some properties used for the build process first. There are two important folders:
First, the <b-frame/> base directory named b-frame, you should not have to touch
the contents of this directory. Second, there is the example's directory b-frame-
examples. We will use this as the start point for our applications, you may use it as
a template for your own future projects.

Since we're using the Ant tool to control the build process the important properties
are expected in a file "build.properties" located in the b-frame-example dir-
ectory. <b-frame/> provides a template "build_example.properties" which
you should copy to "build.properties" before editing.

Where is JBoss and which server configuration to use
jboss.home=../JBoss
jboss.conf=default

Default configuration: Use JBoss-builtin hsqldb database
on file system
database=hsqldb
ds.database=default
ds.name=DefaultDS
jdbc.jar=${jboss.home}/server/${jboss.conf}/lib/hsqldb.jar
jdbc.driver=org.hsqldb.jdbcDriver
jdbc.host=localhost
jdbc.port=1701
jdbc.url=jdbc.url=jdbc:hsqldb:${jboss.home}/server/$
{jboss.conf}/data/hypersonic/localDB
jdbc.userid=sa
jdbc.password=

Listing 1: A sample "build.properties".

If you've chosen the standard distribution you may leave all values as they are.

4

<b-frame/>

Note the following:

 jboss.home must point to the root of your JBoss (version 3.2.x) installation.
 jboss.conf chooses the JBoss configuration (usually “default”).
 database currently selects among hsqldb, mysql, or oracle. Some of the fol-

lowing properties depend on the chosen database.
 ds.database is the name of the database your application will use. Hyperson-

ic will physically implement the database by creating files in ${jboss.
home}/server/${jboss.conf}/data/hypersonic/. If you want to drop
the database, shut down JBoss and delete those files (*.data).

 ds.name should provide the name of the data source operating on that data-
base. To register your own data sources with JBoss see chapter 10.

 jdbc.jar must point to the JAR file containing the JDBC driver.
 jdbc.driver must contain the fully qualified name of the Java class implement-

ing the JDBC driver.
 jdbc.host must contain the host on which your database server is running. In

case of the Hypersonic database integrated with JBoss this is the host on
which JBoss is running. However, by default Hypersonic is configured to be
accessed via a file path, not a TCP connection.

 jdbc.port must contain the port your database server is listening on. The de-
fault Hypersonic database integrated with JBoss listens on port 1701, if you
change default configuration.

 jdbc.url must contain the connection URL for JDBC. In the above example it
is constructed from other properties, so probably there’s no need to change it
explicitly.

 jdbc.userid contains the database user. For Hypersonic it seems always to
be sa.

 jdc.password contains the database user’s password. For Hypersonic no
password is needed.

Next you will habe to copy the file "setpath_example.bat" to "setpath.bat"
(or "setpath_example.sh" to "setpath.sh", depending on your operating
system). It contains the paths to the <b-frame/> and Ant installation directories and is
used by "build.bat", or "build.sh", respectively.
Before continuing you should make sure that your database (e.g. the Hypersonic
database integrated into JBoss) as well as your application server (the current <b-
frame/> version only supports JBoss) are up and running.

Now you can start developing your first <b-frame/> application.

5

<b-frame/>

4 Step One: Just Students
This section describes how to create a simple task just to list and maintain Students.
The task will not allow for assigning Students to Courses. On our way to that goal we
will see

 how to set up a project,
 how to create the database,
 how to create the application, and
 how to cleanup the project.

4.1 The Project’s Setup

First you have to think about a name for your application, it should be unique among
the names of all applications, e.g. university1. For an application’s setup you have to
create a project folder inside b-frame’s app sub folder with the name you’ve just in-
vented for your application. Inside the project’s folder you will need to create a folder
xml which in turn should contain two sub folders, one named db and the other one
named app. Just do the following:

1. Create a folder <b-frame-examples>/university1
2. Create a folder <b-frame-examples>/university1/xml
3. Create a folder <b-frame-examples>/university1/xml/db
4. Create a folder <b-frame-examples>/university1/xml/app

The sub folder db is for holding the description of the application’s database, where-
as the sub folder app is for holding the description of the application’s tasks. The fol-
lowing section describes how to create the database.

4.1.1 The Database
In <b-frame/> the database is defined by means of an XML-file called the database
descriptor. It resides inside the b-frame-examples/university1/xml/db folder
and currently must be named "tables.xml". The following listing shows the data-
base descriptor for the simple Student Task.

<?xml version="1.0"?>
<bf-db:tables xmlns:bf-db="http://www.b-frame.org/b-
frame/db">

<bf-db:table name="student">
 <bf-db:primary-key name="student_pk">
 <bf-db:attribute name="id" type="integer"/>
 </bf-db:primary-key>
 <bf-db:attribute name="name" type="string" length="32"/>
</bf-db:table>

</bf-db:tables>
Listing 2: The database descriptor "tables.xml".

6

<b-frame/>

Up to now the only table defined by the database descriptor is the Student table. The
Student table consists of two attributes, id and name where the table’s primary key is
id. Steps discussed below will add more tables to the database descriptor.

Note the following:

 All tags are taken from the name space http://www.b-frame.org/b-frame/db,
which is reserved for the <b-frame/> database descriptor. Typically the name
space is abbreviated by the prefix bf-db.

 <bf-db:tables> is the root tag of the database descriptor. It allows for several
nested <bf-db:table> tags.

 <bf-db:table> is a tag to describe a single table of a (relational) database. A
<bf-db:table> tag

- must provide the attribute name whose value matches the table name
of the database in use,

- must contain one <bf-db:primary-key> tag,
- may contain one or more <bf-db:foreign-key> tags, and
- may contain one or more <bf-db:attribute> tags.

 <bf-db:primary-key> is a tag for defining a table’s primary key. It always has
to be nested inside a <bf-db:table> tag. A <bf-db:primary-key> tag

- must provide the attribute name with a value usable as the name of a
database constraint (e.g., the table’s name with the suffix "_pk"),

- must contain at least one (the current <b-frame/> version requires ex-
actly one) <bf-db:attribute> tag, and

- may contain several <bf-db:foreign-key> tags.
 <bf-db:foreign-key> is a tag for defining a table’s foreign key. It may be nes-

ted inside a <bf-db:table> tag or a <bf-db:primary-key> tag. A <bf-
db:foreign-key> tag

- must provide the attribute name with a value usable as the name of a
database constraint (often, but not all times, the table’s name and the
referenced table’s name concatenated by the infix "_ref_" is a good
idea),

- must contain one or more <bf-db:attribute> tags.
 <bf-db:attribute> is a tag for defining a table’s attribute. It may be nested in-

side a <bf-db:table> tag, a <bf-db:primary-table> tag, or a <bf-
db:foreign-key> tag. The <bf-db:attribute> doesn’t allow for nested
tags.

One additional note to the above: All potential global database identifiers, i.e., table
names as well as names of primary and foreign keys, should be unique.

Before continuing with the next section you should create the database descriptor as
described above and create the database schema. This is done by executing the
aforementioned build.bat/build.sh command (in the following we will only refer
to build.bat, for Linux/Unix the commands work accordingly). These scripts impli-
citly will call Ant targets, thus the command syntax is the same as with pure Ant.

To create the database schema you can use the cre-schema target. Note that you
will have provide your application’s name, i.e., university1, as an Ant property (altern-

7

<b-frame/>

atively you can override the default in build.properties). Assuming your working
directory is <b-frame/>'s example installation, issue the following command:

D:\b-frame-examples>build -Dapp.name=university1 cre-schema
Buildfile: build.xml
...
 [sql] 2 of 2 SQL statements executed successfully

The Student table should now exist in the database. The next section describes how
to create a task to maintain this table.

4.1.2 The Task
A <b-frame/> application is defined by means of an XML-file called the application
descriptor. It resides inside the b-frame-examples/university1/xml/app
folder and should have the same name as the application, i.e., "universi-
ty1.xml". The following listing shows the application descriptor for the simple
Student Application.

<bf-app:application
 xmlns:bf-app="http://www.b-frame.org/b-frame/app"
 name="university1">

<bf-app:task table="student"/>

</bf-app:application>
Listing 3: The application descriptor "university1.xml".

<b-frame/> introduces the notion of a task, which is something some people might
rather call a use case. A <b-frame/> task may be composed of several subtasks. Be-
side the information how to connect to a database the above application descriptor
contains only one task, the Student task. Steps discussed below will add more tasks.

Note the following:

 All tags are taken from the name space http://www.b-frame.org/b-
frame/app, which is reserved for the <b-frame/> application descriptor. Typic-
ally the name space is abbreviated by the prefix bf-app.

 <bf-app:application> is the root tag of the application descriptor. The <bf-
app:application> tag

- must contain at least one <bf-app:task> tag.
 <bf-app:task> is the most important tag of an application descriptor, it defines

the application’s structure. The <bf-app:task> tag allows for nesting sever-
al other <bf-app:task> tags, i.e., <b-frame/> tasks form a recursive data
structure which is one of the most powerful concepts behind the scenes.

Before continuing you should create the application descriptor as described above,
compile and deploy the application. Again, this is done by executing the build script
parameterized with the application's name.

8

<b-frame/>

D:\b-frame-examples>build -Dapp.name=university1 deploy
Buildfile: build.xml
...
compile:
 [javac] Compiling 51 source files to ...

archive:
 [jar] Building jar: ...
 [war] Building war: ...
 [ear] Building ear: ...

deploy:
 [copy] Copying 1 file to ...

The next section describes how to test the Student task.

4.2 Testing the Task
To test the application you should provide some test data. Do the following:

 Create a folder b-frame-examples/university1/sql.
 Assuming you’re database is Hypersonic, create a folder b-frame-

examples/university1/sql/hsqldb.
 Inside the folder b-frame-examples/university1/sql/hsqldb create a

file "test_data.sql" with a content like the following.

-- clean up
delete from student;
-- construct data
insert into student (id, name) values (1, 'Madonna');
insert into student (id, name) values (2, 'Bono');
insert into student (id, name) values (3, 'Mick Jagger');

Listing 4: Some sample test data "test_data.sql".

To populate the database issue the following command:

D:\b-frame-examples>build -Dapp.name=university1 test-data
Buildfile: build.xml

test-data:
 [sql] Executing file: ...
 [sql] 4 of 4 SQL statements executed successfully

For testing the Student Task point your browser to http://localhost:8080/-
university1/student. The URL is composed by the application’s name, i.e., uni-
versity1, and the task’s name, i.e., student. After clicking the “Submit” button and
selecting on Id 1 the following should appear:

9

<b-frame/>

4.3 Cleaning Up the Project
Dropping the database schema is a common task during development with <b-
frame/>. To achieve this issue the following command:

D:\b-frame-examples>build -Dapp.name=university1 drop-
schema

If this seems to fail, i.e., with a message like “2 of 9 SQL statements execu-
ted successfully” try to run it again until all statements have been executed
(This may happen when foreign key constraints are involved).

Important Note: Removing an application’s tables from the database is a vital
operation, you should do it each time before you add or remove a table to or from the
database descriptor. The reason for that is obvious, only the unmodified database
descriptor reflects the current database schema. If you change the database
descriptor without first dropping the tables, the descriptor is not in sync with the data-
base any longer. It is very likely that you will be faced with a lot of JDBC errors the
next time you try to drop or create the schema. If you run into this (and probably this
will happen some time) the way out is to drop all tables by hand using a database
tool.
In case of the Hypersonic database integrated with JBoss do the following: Shut
down JBoss and edit the file ${jboss.home}/server/${jboss.conf}/
data/hypersonic/localDB.script. Remove all CREATE TABLE and INSERT
statements that belong to your application.

10

Figure 2: A first version of the Student Task.

<b-frame/>

Sometimes you may find it useful to clean up your project too. This typically occurs
when you want to trigger a complete rebuild. In that case, issue the following
command:

D:\b-frame-examples>build -Dapp.name=university1 clean
Buildfile: build.xml

undeploy:
 [delete] Deleting:
C:\jboss\server\default\deploy\university1.ear

clean:
 [delete] Deleting directory D:\b-
frame\app\university1\build

The next chapter describes how to complete the Student and Institute Tasks.

Note: Before continuing you should drop the database schema as described above,
otherwise you probably will run into trouble as explained above.

5 Step Two: Just Institutes
This step introduces the Institute Task which is very similar to the Student Task. In
order to avoid disturbances between the intermediate steps, each step will create a
its own project. Thus do the following:

 Copy the complete folder b-frame-examples/university1 to b-frame-
examples/university2

 Rename the application descriptor b-frame-examples/university2/-
xml/app/university1.xml to b-frame-examples/university2/-
xml/app/university2.xml.

 For the <bf-app:application> tag on top of the application descriptor b-
frame-examples/university2/xml/app/university2.xml change
the value of the attribute name from university1 to universiy2.

Now you’re ready to add the Institute table to the database descriptor.

<?xml version="1.0"?>
<bf-db:tables xmlns:bf-db="http://www.b-frame.org/b-
frame/db">

<bf-db:table name="student">
 <bf-db:primary-key name="student_pk">
 <bf-db:attribute name="id" type="integer"/>
 </bf-db:primary-key>
 <bf-db:attribute name="name" type="string" length="32"/>
</bf-db:table>

<bf-db:table name="institute">
 <bf-db:primary-key name="institute_pk">

11

<b-frame/>
 <bf-db:attribute name="name" type="string"
length="32"/>
 </bf-db:primary-key>
</bf-db:table>

</bf-db:tables>
Listing 5: Database descriptor "tables.xml", version 2

This being done you probably remember from the previous step that it is now time to
create the database schema (note that you have to provide the application name
university2):

D:\b-frame-examples>build -Dapp.name=university2 cre-schema
Buildfile: build.xml
...

cre-schema:
 [sql] Executing file: ...
 [sql] 4 of 4 SQL statements executed successfully

Next you have to introduce the Institute Task to your application descriptor "uni-
versity2.xml", which now should look like this:

<?xml version="1.0"?>
<bf-app:application
 xmlns:bf-app="http://www.b-frame.org/b-frame/app"
 name="university2">

<bf-app:task table="student"/>
<bf-app:task table="institute"/>

</bf-app:application>

Listing 6: The new application descriptor "university2.xml"
Finally you’re ready to deploy the application:

D:\b-frame-examples>build -Dapp.name=university2 deploy
Buildfile: build.xml
...

compile:
 [javac] Compiling 93 source files to ...

archive:
 [jar] Building jar: ...
 [war] Building war: ...
 [ear] Building ear: ...

deploy:
 [copy] Copying 1 file to ...

12

<b-frame/>

Probably you want to test the new task. To have some data you should modify the
file "b-frame-examples/university2/sql/hsqldb/test_data.sql":

 Add a statement for cleaning up the Institute table on top of the file.
 Add some statements for population the Institute table at the bottom of the

file.

Remember the general rule that cleaning up should always done in the opposite or-
der than constructing (if you build a tower, you start at the bottom, if you remove it,
you start at the top). If you think about the order by which tables are populated or
cleaned up, respectively, bear in mind, that in general (not at this time) there are de-
pendencies introduced by foreign keys: A referenced table should be populated be-
fore the referencing table.

The following is an example:

-- clean up
delete from institute;
delete from student;
-- construct student data
insert into student (id, name) values (1, 'Madonna');
insert into student (id, name) values (2, 'Bono');
insert into student (id, name) values (3, 'Mick Jagger');
-- construct institute data
insert into institute (name) values ('Computer Science');
insert into institute (name) values ('Mathematics');
insert into institute (name) values ('Physics');

Listing 7: Some sample test data "test_data.sql".

Populate the database by issuing the following command:

D:\b-frame-examples>build -Dapp.name=university2 test-data
Buildfile: build.xml

test-data:
 [sql] Executing file: ...
 [sql] 8 of 8 SQL statements executed successfully

To verify that everything is fine, point your browser to http://localhost:8080/ -
university2/institute, click the “Submit” button, select Computer Science and you
should see something like this:

13

<b-frame/>

Figure 3 A first version of the Institute Task.

The next section explains how to add a nested task, the Professor Task, to the Insti-
tute Task. But before moving on, you should clean up the project and drop the data-
base schema as described in section 4.3.

6 Step Three: Institutes and Professors
This step will add the Professor Task to the Institute Task. Before continuing you
should duplicate the project university2 to university3 accordingly as described in the
previous step.

First you have to add the Professor table to the database descriptor.

<bf-db:table name="professor">
 <bf-db:primary-key name="professor_pk">
 <bf-db:foreign-key name="prof_ref_inst" ref="insti-
tute">
 <bf-db:attribute name="institute_name" label="Insti-
tute Name"
 type="name"/>
 </bf-db:foreign-key>
 <bf-db:attribute name="id" label="Professor ID"
type="integer"/>
 </bf-db:primary-key>
 <bf-db:attribute name="name" label="Professor Name"
 type="string" length="32"/>
 <bf-db:attribute name="salary" label="Salary" type="in-
teger"/>

14

<b-frame/>
</bf-db:table>

Listing 8: The Professor table.
Note the following:

 The Professor table’s primary key has a nested foreign key referencing the In-
stitute table. The <bf-db:foreign-key> tag’s attribute ref defines which
table is referenced.

 A <bf-db:foreign-key> tag has to contain exactly the same number of
<bf-db:attribute> tags as the <bf-db:primary-key> tag of the refer-
enced table.

 The <bf-db:attribute> tags nested to the <bf-db:foreign-key> tag
and to the referenced table’s <bf-db:primary-key> tag, respectively, have
to match each other pair-wise. The match is mediated by the <bf-db:at-
tribute> tag nested to the <bf-db:foreign-key> tag. Its type attribute
has to point to the name attribute of the corresponding <bf-db:attribute>
tag nested to the referenced table’s <bf-db:primary-key> tag. In the
above example the attribute institute_name of the Professor table references
the attribute name of the Institute table.

 If not provided explicitly by an <bf-db:attribute> tag’s label attribute, labels are
derived from the name attribute. Some of the Professor table’s attribute define
labels explicitly.

Provided you’ve added the Professor table to your database descriptor you may now
create the database schema as discussed in previous steps. Next you have to intro-
duce the Professor Task to your application descriptor. Because the Professor Task
is a subtask of the Institute Task you should do so by modifying the Institute Task in
the following way.

<bf-app:task table="institute">
 <bf-app:task table="professor"/>
</bf-app:task>

Listing 9: The Professor Task nested inside the Institute Task.
Done that you finally may deploy the application as described in previous steps.

To have some data for testing the Professor Task define it as usual by modifying the
file "test_data.sql" accordingly. Add a command for cleaning up the Professor
table at the top of that file and at its bottom some statements like the following for
creating the data.

-- construct professor data
delete from professor;
insert into professor (institute_name, id, name, salary)
 values ('Computer Science', 1, 'Gosling', '6000');
insert into professor (institute_name, id, name, salary)
 values ('Computer Science', 2, 'Stroustrup', '6000');
insert into professor (institute_name, id, name, salary)
 values ('Computer Science', 3, 'Wirth', '6000');
insert into professor (institute_name, id, name, salary)

15

<b-frame/>
 values ('Mathematics', 1, 'Euklid', '6000');
insert into professor (institute_name, id, name, salary)
 values ('Mathematics', 2, 'Gauss', '6000');
insert into professor (institute_name, id, name, salary)
 values ('Physics', 1, 'Newton', '6000');
insert into professor (institute_name, id, name, salary)
 values ('Physics', 2, 'Maxwell', '6000');
insert into professor (institute_name, id, name, salary)
 values ('Physics', 3, 'Hawking', '6000');

Listing 10: Some sample Professor data.
Once you have

 populated the database as described in previous steps,
 pointed the browser to http://localhost:8080/university3/institute,
 clicked on the “Submit” button,
 selected the Computer Science institute,
 selected the Professor page,
 and finally selected the Professor Id 3,

you should see something like this:

Note how the task’s recursive structure is preserved by the mask.
The following section adds the Course Task to the Professor Task. Before continuing
don’t forget to clean up, especially the database schema.

16

Figure 4: The Institute Task with the nested Professor Task

<b-frame/>

7 Step Four: Institutes, Professors and Courses
Now its time to add the Course Task to the university application. Before doing so
you should duplicate the project from university3 to university4. The Course table to
be added looks like this:

<bf-db:table name="course">
 <bf-db:primary-key name="course_pk">
 <bf-db:foreign-key name="course_ref_prof" ref="profess-
or">
 <bf-db:attribute name="institute_name" type="insti-
tute_name"/>
 <bf-db:attribute name="professor_id" type="id"/>
 </bf-db:foreign-key>
 <bf-db:attribute name="id" label="Course ID" type="in-
teger"/>
 </bf-db:primary-key>
 <bf-db:attribute name="title" label="Course Title"
 type="string" length="32"/>
</bf-db:table>

Listing 11: The Course table.
Note that the Course table’s primary key has a nested foreign key pointing to the
Professor table. Create the database schema in the usual way.
The application descriptor should be modified as follows to define the Course Task
nested to the Professor Task.

<bf-app:task table="institute">
 <bf-app:task table="professor">
 <bf-app:task table="course"/>
 </bf-app:task>
</bf-app:task>

Listing 12: The Course Task nested to the Professor Task.
Now everything is ready to deploy the application in the usual way. For testing the
Course Task first modify the file "test_data.sql" by adding a statement for
cleaning up the Course table on top of that file and some statements like the follow-
ing at its bottom.

-- construct course data
delete from course;
insert into course (institute_name, professor_id, id,
title)
 values ('Computer Science', 1, 1, 'Java');
insert into course (institute_name, professor_id, id,
title)
 values ('Computer Science', 2, 1, 'C++');
insert into course (institute_name, professor_id, id,
title)
 values ('Computer Science', 3, 1, 'Modula');
insert into course (institute_name, professor_id, id,
title)

17

<b-frame/>
 values ('Computer Science', 3, 2, 'Pascal');
insert into course (institute_name, professor_id, id,
title)
 values ('Computer Science', 3, 3, 'Oberon');
insert into course (institute_name, professor_id, id,
title)
 values ('Mathematics', 1, 1, 'Geometry');
insert into course (institute_name, professor_id, id,
title)
 values ('Mathematics', 2, 1, 'Analysis');
insert into course (institute_name, professor_id, id,
title)
 values ('Mathematics', 2, 2, 'Applied Mathematics');
insert into course (institute_name, professor_id, id,
title)
 values ('Physics', 1, 1, 'Mechanics');
insert into course (institute_name, professor_id, id,
title)
 values ('Physics', 1, 2, 'Gravity');
insert into course (institute_name, professor_id, id,
title)
 values ('Physics', 2, 1, 'Electrodynamics');
insert into course (institute_name, professor_id, id,
title)
 values ('Physics', 3, 1, 'Cosmology');

Listing 13: Some sample data to populate the Course table.

Provided the database schema is created, the application is deployed and the data-
base is populated, pointing your browser to http://localhost:8080/university4/ institute
and navigating to the Oberon course held by Professor Wirth should reveal
something like this:

18

<b-frame/>

Figure 5: The Institute Task with the Professor and Course Tasks nested

The next step is the final one, it will modify both tasks, the Student Task as well as
the Institute Task, to enable a user assigning Students to Courses. As usual you
should clean up the database schema and the project before continuing.

8 Step Five: Students and Courses
So far we have two tasks both allowing a user to maintain independent hierarchical
data structures. This final step will link the two hierarchies by means of the associ-
ation class StudentCourseVisit.

<bf-db:table name="visit">
 <bf-db:primary-key name="visit_pk">
 <bf-db:foreign-key name="visit_ref_student"
ref="student">
 <bf-db:attribute name="student_id" type="id"/>
 </bf-db:foreign-key>
 <bf-db:foreign-key name="visit_ref_course"
ref="course">
 <bf-db:attribute name="institute_name"
type="institute_name"/>
 <bf-db:attribute name="professor_id"
type="professor_id"/>
 <bf-db:attribute name="course_id" type="id"/>
 </bf-db:foreign-key>
 </bf-db:primary-key>
</bf-db:table>

19

<b-frame/>

Listing 14: The Visit table.

As usual you should add the Visit table to the database descriptor and create the
database schema.
From the application’s point of view it should be possible,

 if looking at a Student to see all Courses he or she visits, and
 if looking at a Course to see all Students visiting it.

To achieve this you have to add a corresponding subtask to both tasks, the Student
as well as the Course Task.

<bf-app:task table="student">
 <bf-app:task name="course_list" table="visit"/>
</bf-app:task>

<bf-app:task table="institute">
 <bf-app:task table="professor">
 <bf-app:task table="course">
 <bf-app:task name="student_list" table="visit"/>
 </bf-app:task>
 </bf-app:task>
</bf-app:task>

Listing 15: The Course List and Student List Tasks.
Note that because a task’s name has to be unique within application scope, it's no
longer possible to make use of <b-frame/>’s implicit assumption that a task’s name is
the same as the name of the table the task operates on. To allow more than one
task operating on the same table, the tasks have to be distinguished by the name at-
tribute of the <bf-app:task> tag.

Provided you’ve adapted the application descriptor you may deploy the application in
the usual way. To have some sample data, add a command for deleting the Visit
table on top and some statements like the following at the bottom of file
"test_data.sql".

-- construct visit data
delete from visit;
insert into visit (student_id, institute_name,
professor_id, course_id)
 values (1, 'Computer Science', 1, 1);
insert into visit (student_id, institute_name,
professor_id, course_id)
 values (1, 'Mathematics', 2, 1);
insert into visit (student_id, institute_name,
professor_id, course_id)
 values (1, 'Physics', 3, 1);
insert into visit (student_id, institute_name,
professor_id, course_id)
 values (2, 'Computer Science', 2, 1);

20

<b-frame/>

insert into visit (student_id, institute_name,
professor_id, course_id)
 values (2, 'Mathematics', 2, 2);
insert into visit (student_id, institute_name,
professor_id, course_id)
 values (2, 'Physics', 2, 1);
insert into visit (student_id, institute_name,
professor_id, course_id)
 values (3, 'Computer Science', 3, 1);
insert into visit (student_id, institute_name,
professor_id, course_id)
 values (3, 'Mathematics', 2, 1);
insert into visit (student_id, institute_name,
professor_id, course_id)
 values (3, 'Physics', 1, 1);

Listing 16: Some sample data to populate the Course table.

That being done populate the database as described in previous steps.

You may now see the Course List Task as well as Student List Task if you navigate
to them starting with from Student Task or the Institute Task, respectively. The fol-
lowing figure shows the Course List Task nested to the Student Task.

21

Figure 6: The Student Task with the Course List Task nested.

<b-frame/>

As far as the structure is considered, both tasks, the Student Task as well as the In-
stitute Task, are now complete. Now we will customize the tasks to make them more
user friendly.

9 Customizing Tasks

9.1 Customizing a Group
Looking at the Student Task it is not very comfortable to see only a list of numbers,
who can remember them all? It would be better to also have the names in the list.
Fortunately <b-frame/> offers a possibility to customize the list as well as all other
field groups.

<bf-app:task table="student">
 <bf-app:group type="list">
 <bf-app:field name="id" label="ID"/>
 <bf-app:field name="name" label="Name" link="true"/>
 </bf-app:group>
 <bf-app:task name="course_list" table="visit"/>
</bf-app:task>

Listing 17: The Student Task with customized select list.
Note the following:

 One or more <bf-app:group> tags may be nested to a <bf-app:task>
tag for customizing a group of fields.

 The group is identified by the type attribute of tag <bf-app:group> defining
the mask which should be customized. For the type attribute the following val-
ues are allowed:

- "list",
- "display",
- "insert", and
- "update".

 A group of a given type can occur only one time.
 One or more <bf-app:field> tags may be nested to a <bf:-app:group>

tag. The <bf-app:field> tag allows the following attributes:
- The name attribute is mandatory, it has to match an attribute of the

table corresponding to the task.
- The label attribute is optional.
- The link attribute is optional. It is only useful for a group of type

"list". If set to "true", this field will have a link.

After adapting the application descriptor and deploying the application, it should look
like this:

22

<b-frame/>

Listing 18: The Student Task with customized select list.

The following section describes how to customize a task to have other than primary
key fields for user input to the select operation.

9.2 Customizing the Query
By default, the query of a top level task allows user input for the primary key fields.
This is a good default solution, but in most cases it will be necessary to define the
fields for user input. To enable this the tags <bf-app:query> and <bf-app:in-
fix> may be used as shown in the following listing.

<bf-app:task table="student">
 <bf-app:query>
 <bf-app:infix name="and">
 <bf-app:field name="id" label="ID"/>
 <bf-app:field name="name" label="Name"/>
 </bf-app:infix>
 </bf-app:query>
 <bf-app:group type="list">
 <bf-app:field name="id" label="ID"/>
 <bf-app:field name="name" label="Name" link="true"/>
 </bf-app:group>
 <bf-app:task name="course_list" table="visit"/>
</bf-app:task>

Listing 19: The Student Task with customized query.
The tables Course and Professor are joined to the Visit table for displaying the
course's title and the professor's name. Note that the fields course.id and profess-

23

<b-frame/>

or.id are given an alias because each field of a group needs to have a unique
identifier. When thinking about identifiers, bear in mind that each group is extended
by <b-frame/> to include all primary key attributes (but only the defined attributes oc-
cur on a mask).

Figure 7: The Student Task with customized query.

Note that the current version does not allow to have fields from joined tables as user
input for the select operation, as described in the following section for groups of type
list and display.

9.3 Joining Tables
By default, the fields of a group are the attributes of the corresponding table.
However, sometimes it is necessary to display information from related tables as
well. Currently <b-frame/> allows joining tables using foreign keys in list and display
groups as illustrated by the following listing.

<bf-app:task table="student">
 <bf-app:query>
 <bf-app:infix name="and">
 <bf-app:field name="id" label="ID"/>
 <bf-app:field name="name" label="Name"/>
 </bf-app:infix>
 </bf-app:query>
 <bf-app:group type="list">
 <bf-app:field name="id" label="ID"/>
 <bf-app:field name="name" label="Name" link="true"/>
 </bf-app:group>

24

<b-frame/>
 <bf-app:task name="course_list" table="visit">
 <bf-app:group type="list">
 <bf-app:field name="institute_name"
label="Institute"/>
 <bf-app:field table="professor" name="id"
 alias="professor_test_id" label=""/>
 <bf-app:field table="professor" name="name"
label="Professor"/>
 <bf-app:field table="course" name="id"
 alias="course_test_id" label=""/>
 <bf-app:field table="course" name="title"
 label="Course" link="true"/>
 <bf-app:join table="course" on="visit_ref_course">
 <bf-app:join table="professor"
on="course_ref_prof"/>
 </bf-app:join>
 </bf-app:group>
 </bf-app:task>
</bf-app:task>

Listing 20: The Course List Task with fields joined to the list.
The example joins fields from the Course and Professor tables to the Visit table us-
ing the foreign keys visit_ref_course and course_ref_prof, respectively. The resulting
mask looks as follows.

Figure 8: The Course List Task with fields joined to the list.

25

<b-frame/>

Note that the current <b-frame/> version allows joining only for groups of type list and
display. The following chapter discusses how to use databases other than Hyperson-
ic.

10 Database configuration
All information with respect to an application’s database and its data source has to
be provided in the properties file "build.properties". What kind of information
is necessary depends on the database and is explained in detail below. For creating
the database and the data source the following Ant targets are available:

 cre-user creates a database (MySQL) or a database user (Oracle). Editing
SQL scripts beforehand is not needed any longer. For Hypersonic the target is
meaningless.

 drop-user drops a database (MySQL) or a database user (Oracle). Editing
SQL scripts beforehand is not needed any longer. For Hypersonic the target is
meaningless.

However, use these targets with care. It is probably better to use the proper adminis-
tration tool provided by your database (e.g., MysqlCC for MySQL).

10.1 Installing a data source in JBoss
To install a new data source choose one of the templates in the ${jboss.home}/
docs/examples/jca directory and copy it to ${jboss.home}/server/$
{jboss.conf}/deploy directory. For instance, copy mysql-ds.xml and edit it to
reflect your local settings:

<datasources>
 <local-tx-datasource>
 <jndi-name>UniversityDS</jndi-name>
 <connection-url>jdbc:mysql://localhost:3306/university</connection-url>
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <user-name></user-name>
 <password></password>
 </local-tx-datasource>
</datasources>

Listing 21: MySQL data source descriptor.
Note that the <jndi-name> tag contains the symbolic name for the data source,
and that the <connection-url> tag ends with the database name.
Before you start JBoss however, you'll have to make the JDBC driver known to it.
This can be accomplished by simply copying the JAR file containing the driver to
${jboss.home}/server/${jboss.conf}/lib.

The next sections discuss which properties should be provided in the
"build.properties" for the MySQL and the Oracle databases. This chapter’s fi-
nal section describes how to deal with the appropriate Ant commands.

26

<b-frame/>

10.2 MySQL
This section describes how to use MySQL instead of the Hypersonic database. As-
suming you’re application shall use a database named university and a data source
named UniversityDS, your properties file "build.properties" should look like
this:

Where JBoss is located and which server configuration to
use
jboss.home=../JBoss
jboss.conf=default

Alternate configuration: MySQL
database=mysql
ds.database=university
ds.name=UniversityDS
jdbc.jar=C:/mysql/mysql-jdbc.jar
jdbc.driver=com.mysql.jdbc.Driver
jdbc.host=localhost
jdbc.url=jdbc:mysql://${jdbc.host}/${ds.database}
jdbc.userid=
jdbc.password=
jdbc.system-url=jdbc:mysql://${jdbc.host}/university

Listing 22: "build.properties" customized for using the MySQL database.

10.3 Oracle
This section describes how to use Oracle instead of the Hypersonic database. As-
suming you’re application shall use a database named university and a data source
named UniversityDS, your properties file "build.properties" should look like
this:

Alternate configuration: Oracle
database=oracle
ds.name=UniversityDS
jdbc.jar=C:/oracle/ora81/jdbc/lib/classes12.zip
jdbc.driver=oracle.jdbc.driver.OracleDriver
jdbc.host=localhost
jdbc.port=1521
jdbc.instance=pb
jdbc.url=jdbc:oracle:thin:@${jdbc.host}:${jdbc.port}:
${jdbc.instance}
jdbc.system-userid=system
jdbc.system-password=manager
jdbc.userid=university
jdbc.password=university
Listing 23: "build.properties" customized for the Oracle database.

27

<b-frame/>

10.4 Ant Targets

This section gives examples for how to deal with the Ant commands for creating or
removing a database. The examples are taken from the university1 application. If
you need to create the application’s database, e.g. university, issue the following
command:

D:\b-frame-examples>build -Dapp.name=university1 cre-user
Buildfile: build.xml

cre-user:
 [style] Processing ...
 [style] Loading stylesheet ...
 [sql] Executing file: ...
 [sql] 1 of 1 SQL statements executed successfully

As you may have guessed, dropping the database is possible in the following way:

D:\b-frame-examples>ant -Dapp.name=university1 drop-user
Buildfile: build.xml

drop-user:
 [sql] Executing file: ...
 [sql] 1 of 1 SQL statements executed successfully

11 <b-frame/> architecture
The <b-frame/> architecture is influenced by the so called „Business Delegate“
design pattern in many places. The client (here: the web server) calls the business
logic via facades (a pattern again). The implementation classes behind the abstract
interfaces are created by generic “Factories” (you guessed it: a pattern). The de-
veloper may choose among several variants, for example whether the data access is
performed through direct JDBC statements in the facades or by delegation the ac-
cess to Entity Beans. You may also decide whether Entity and Session Beans should
be accessed via remote (RMI) or local method calls. The former makes sense if web
server and application server are supposed to run on different hosts. Otherwise the
local view is much more efficient.
The following figure 9 shows the three most import configuration possibilities with <b-
frame/>:

1. By default a JDBC-DB is created which is used by the Servlet to directly access
the database via JDBC calls. This is simple, but transactional properties have to
maintained by this business delegate itself.

2. The second possibility is to use the EJB approach with a Session Bean facade
that delegates requests to DAO business delegate (“Data Access Object”). This is
more complex but allows to use the transactional services offered by the applica-
tion server.

3. In the third case the business logic is mapped to Entity Beans (EJB) and thus to
an EJB business delegate is used. The access to the Entity and Session Beans
my be either a remote or a local call where the latter is more efficient and thus the
default.

28

<b-frame/>

The creation of the respective adapter is controlled by factories instantiating the
proper class at run time. Which implementation class is to be used is determined
during the build process, i.e., by configuration of the application descriptor (see sec-
tion 11.2).

11.1 How to augment business logic
In order to extend or adapt the default business logic it is possible to override the
used factories. To do so you just have to supply a Java class whose fully qualified
name is referenced in the application descriptor. Currently, the source file must be
located in the project’s sub folder "src", e.g., in "bframe-examples/uni-
versity/src". The class must implement the generated interface. It is also pos-
sible to extend the generated factory class and override just those methods which
are of interest. A very simple example is just to add a “println” statement.

29

Figure 9: <b-frame/> architecture

Browser
Web-Server JDBC-BD

Datenbank

Browser

Application
Server

Web-Server Session-Bean
Fassade (BD)

Datenbank

DAO-BD

Browser

Application
Server

Web-Server
Session-Bean
Fassade (BD)

Datenbank

EJB-BD

Entity Bean

Entity Bean

<b-frame/>
package user.foo;
import java.util.List;

import university.student.common.CourseListBD;
import university.student.common.StudentBD;
import university.student.common.StudentDefaultFactory;
import university.student.common.StudentFactory;
import university.student.common.StudentSelectVO;
import university.student.common.StudentUncommittedDsBD;

public class MyStudentFactory extends StudentDefaultFactory
implements StudentFactory {

 public MyStudentFactory() {
 System.out.println(getClass().getName() +

 "::MyStudentFactory()");
 }

 public StudentBD createStudentBD() {
 System.out.println(getClass().getName() +

 "::createStudentBD()");
 return super.createStudentBD();
 }
}

Listing 24: Custom factory class for creating student BDs.

11.2 Configuration of the application descriptor
The application descriptor, e.g., "university.xml" may contain a single tag con-
figuring the way the application will be generated.

<bf-app:application
xmlns:bf-app="http://www.b-frame.org/b-frame/app"
name="university">

<bf-app:ejb type="local" entity="true"/>
...

</bf-app:application>
Listing 25: Application descriptor configuration.

The <bf-app:ejb> has two parameters: type determines whether the access to the
facade should be implemented via a remote or a local call. The second parameter
entity determines whether to use Entity Beans or Data Access Objects (which is the
default).

To override the used factory class, you just have to set an additional parameter fact-
ory for the already introduced <bf-app:task> tag:

30

<b-frame/>
<bf-app:task table="student"

factory="user.foo.MyStudentFactory">
...

</bf-app:task>
Listing 26: Factory configuration.

12 Summary
Having worked through the all steps of the example it should have become clear that
developing an application with <b-frame/> goes like this:

1. Adapt the file "build.properties” according to your needs.
2. Invent a name for your application.
3. Inside <b-frame-examples/>’s create a project folder with the application’s

name (or create a new directory containing "build.properties" and
everything).

4. Inside the project folder’s sub folder "xml/db" edit the database descriptor
"tables.xml".

5. Create the database schema ("build cre-schema").
6. Inside the project folder’s sub folder "xml/app" edit the application

descriptor.
7. Deploy the application ("build deploy").
8. Test the application.
9. If the test is OK:

- You're done
10.Otherwise:

- Drop the database schema (See section 4.3).
- Optionally cleanup.
- GOTO 4

Probably you’ve discovered some restrictions, weaknesses or limitations of the cur-
rent <b-frame/> version, among them:

 Attributes may only have a few types: string, integer, number.
 The user input is not verified.
 The client using nested frames is slow.
 Mozilla allows stacking frames into each other only a few times.
 Primary keys may consist of one or more foreign keys (that’s OK) but exactly

one additional attribute, and that’s a real weakness.

These issues will be addressed in the near future and a lot more features will be
available. If you have ideas how to improve <b-frame/> or like to participate on the
<b-frame/> project, please send mail to info@b-frame.org.

31

